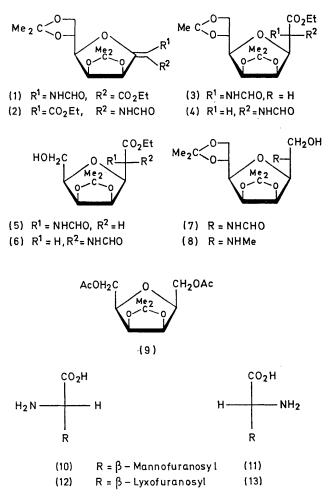
Synthesis of Glycosyl a-Amino Acids

By KARL BISCHOFBERGER, RICHARD H. HALL*, and AMOR JORDAAN

(National Chemical Research Laboratory, Council for Scientific and Industrial Research, Pretoria 0001,

Republic of South Africa)

Summary. The major isomer, (E)-1,4-anhydro-1-ethoxycarbonyl(formylamino)methylene-2,3:5,6-di-O-isopropylidene-D-mannitol (2), obtained by the reaction of α metallated ethyl isocyanoacetate with 2,3:5,6-di-O-isopropylidene-D-mannono-1,4-lactone, gives, on hydrogenation and acidic hydrolysis, 2-L-(and 2-D-)(β -D-mannofuranosyl)glycines (10) and (11), and can be converted into 2-L- and 2-D-(β -D-lyxofuranosyl)glycines (12) and (13).


THE discovery of the polyoxins¹ has led to interest in sugars linked to amino acids via a carbon-carbon linkage and compounds with an amino acid group attached to C-4² and C-3³ of furanosyl sugars have been prepared. We report the synthesis of derivatives linked via C-1 of furanosyl sugars.

The key step in the synthesis is the formylaminomethylenation⁴ (EtO₂C·CH₂NC, KH, THF, -10 °C) of a lactone, 2,3:5,6-di-O-isopropylidene-D-mannono-1,4-lactone to give, after chromatography on silica, an unstable compound which was not further investigated, followed by (Z)-1,4-anhydro-1-ethoxycarbonyl(formylamino)methylene-2,3:5,6-di-O-isopropylidene-D-mannitol (1)† (4%), a homogeneous syrup, $[\alpha]_{D}^{22} + 112^{\circ}$, and the *E*-isomer (2) (51%), m.p. 106—108 °C, $[\alpha]_{D}^{22} + 304^{\circ}$. The analogous reaction with γ -butyrolactone does not take place.

Catalytic hydrogenation of (2) (Raney Ni in 95% EtOH, 50 lb in⁻², 25 °C) gave after separation by chromatography on silica, 2-L-ethyl-(2,3:5,6-di-O-isopropylidene- β -D-mannofuranosyl)-N-formylglycinate (3) (90%), a homogeneous oil, $[\alpha]_{D}^{22} - 6^{\circ}$, and the D-isomer (4) (6%), m.p. 137–138 °C, $[\alpha]_{D}^{22} + 7^{\circ}$. Under similar conditions (1) was not hydrogenated.

The 5,6-O-isopropylidene group of (3) was removed by mild hydrolysis, the resulting diol was cleaved with NaIO₄, and the aldehyde obtained was hydrogenated (Raney Ni in 80% aq. EtOH, 50 lb in⁻², 25 °C) to give 2-L-ethyl-(2,3-O-isopropylidene- β -D-lyxofuranosyl)-N-formylglycinate (5) [85% from (3)], m.p. 128—130 °C, $[\alpha]_D^{22} - 6^\circ$. Similar treatment of (4) gave the D-isomer (6) (84%), m.p. 153— 155 °C, $[\alpha]_D^{22} + 13^\circ$. The reduction of the aldehydes with NaBH₄ was avoided because of the possible reduction of the ester with excess of the reagent⁵ as shown by the reaction of (3) with excess of NaBH₄ to give the anhydrooctitol (7) (39%), m.p. 149—150 °C, $[\alpha]_D^{22} - 33^\circ$. Reduction of (3) with 1 equiv of LiAlH₄ also gave (7) (35%), whereas with a large excess the N-formyl group was reduced to give (8) (41%), m.p. 43—48°, $[\alpha]_D^{22} 0^\circ$.

Signals at τ 6.01 (1H, dd, $J_{1,1'}$ 6, $J_{1,2}$ 3.5 Hz, H-1) and 6.00 (1H, dd, $J_{1,1'}$ 6, $J_{1,2}$ 3 Hz, H-1) in the n.m.r. spectra in CDCl₃ of (5) and (6), respectively, showed⁶ that they are the β -compounds. Furthermore, removal of the 5,6-O-isopropylidene group of (8), cleavage with NaIO₄, reduction with NaBH₄, and finally acetylation gave 1,6-di-O-acetyl-2,5-anhydro-3,4-O-isopropylidene-D-galacitol (9) [42% from (8)], m.p. 114—115 °C, $[\alpha]_D^{22} 0^\circ$ which because of its plane of symmetry gave simple n.m.r. spectra (¹H and ¹³C) and is optically inactive. These results are incompatible with a D-talitol configuration and consequently with the α -configuration for compounds (3)—(8).

Compound (3) was hydrolysed (aq. 0.5M HCl, 5 h, 96 °C) and, after removal of the acid *in vacuo*, an aqueous solution of the salt obtained was passed through a column of basic resin [Amberlite IR-45(OH)] and the solvent was removed to give the free amino acid, L-2-(β -D-mannofuranosyl)glycine (10) (58%), decomp. *ca.* 205 °C (H₂O-EtOH), $[\alpha]_{20}^{20} - 60^{\circ}$ (*c ca.* 1, H₂O), $[\alpha]_{20}^{20} - 52^{\circ}$ (*c ca.* 1, aq. 0.5M HCl), o.r.d., $[\phi]_{224} + 290$ (peak). Similar treatment of (4) gave

† All new compounds had satisfactory microanalytical and spectral properties. Optical rotations were measured for solution in chloroform ($c 1.0 \pm 0.3\%$) unless otherwise stated. O.r.d. spectra were recorded for solutions in aqueous 0.5m HCl (c 1.3—1.7 × 10⁻⁸).

the D-amino acid (11) (41%), decomp. ca. 140 °C (amorphous), $[\alpha]_D^{20}$ + 12° (c ca. 1, H_2O), $[\alpha]_D^{20}$ – 6° (c ca. 1, aq. **0.5**M HCl); o.r.d., $[\phi]_{220} - 800$ (trough). Hydrolysis of (5) gave L-2-(β -D-lyxofuranosyl)glycine (12) (54%), decomp. ca. 217 °C (H₂O-EtOH), $[\alpha]_{D}^{20}$ – 48° (c ca. 1, H₂O), $[\alpha]_{D}^{20}$ -29° (c ca. 1, aq. 0.5M HCl); o.r.d., $[\phi]_{223} + 2040$ (peak) and hydrolysis of (6) gave the D-amino acid (13) (54%), decomp. ca. 100 °C (amorphous), $[\alpha]_D^{20} + 41^\circ$ (c ca. 1, H₂O),

807

 $[\alpha]_{D}^{20} + 18^{\circ}$ (c ca. 1, aq. 0.5M HCl); o.r.d. $[\phi]_{219} - 890$ (trough).

The configurations of the amino acids (10)-(13) were assigned from their o.r.d. spectra.7 These assignments are supported by the specific rotational shifts induced by acidification.8

(Received, 7th August 1975; Com. 916.)

¹ K. Isono, K. Asahi, and S. Susuki, J. Amer. Chem. Soc., 1969, 91, 7490; and references therein. ² N. P. Damodaran, G. H. Jones, and J. G. Moffatt, J. Amer. Chem. Soc., 1971, 93, 3812; T. Naka, T. Hashizume, and M. Nishimura, Tetrahedron Letters, 1971, 95; H. Ohrui, H. Kuzuhara, and S. Emoto, *ibid.*, p. 4267; S. Ohdan, T. Okamoto, S. Maeda, T. Ichikawa, Y. Araki, and Y. Ishido, Bull. Chem. Soc. Japan, 1973, 46, 981; H. Paulsen and E. Mäckel, Chem. Ber., 1973, 106, 1525; K. Ochi and K. Okui, Chem. and Pharm. Bull. (Japan), 1974, 22, 2223. ^a A. Rosenthal and C. M. Richards, Carbohydrate Res., 1973, 31, 331, and references therein; A. J. Brink and A. Jordaan, *ibid.*, 1074, 34, 1

1974, 34, 1.
⁴ D. Hoppe, Angew. Chem. Internat. Edn., 1974, 13, 789; U. Schöllkopf, ibid., 1970, 9, 763.
⁵ M. L. Wolfrom and K. Anno, J. Amer. Chem. Soc., 1952, 74, 5583.
⁶ C. W. L. Wolfrom and K. C. Pornet. Canad. J. Chem., 1974. 52, 1266; S. J. Angyal, V. A. Pi

⁶S. Hannessian and A. G. Pernet, Canad. J. Chem., 1974, 52, 1266; S. J. Angyal, V. A. Pickles, and R. Ahluwalia, Carbohydrate Res., 1967, 3, 300.

⁷ W. Klyne, in 'Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry', ed. G. Snatzke, Heyn, London, 1967, p. 193.

⁸ J. P. Greenstein and W. Winitz, 'Chemistry of the Amino Acids', Wiley, New York, 1961, vol. 1, p. 83.